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ABSTRACT 
 

 We introduce a new family of continuous distributions called the transmuted 

geometric-G family which extends the transmuted family pioneered by Shaw and 

Buckley (2007). Some of its mathematical properties including explicit expressions for 

the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, 

order statistics and probability weighted moments are derived. Some special models of 

the new family are provided. The maximum likelihood method is used for estimating the 

model parameters. The importance and flexibility of the proposed family are illustrated 

by two applications to real data sets. 
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1. INTRODUCTION 
 

 Recently, several generalized families of continuous distributions have been proposed 

and applied to model various phenomena. However, there is a clear need for extended 

forms of the well-known distributions by adding one or more shape parameter(s) in order 

to obtain greater flexibility in modelling various data. 
 

 Some well-known families are the Marshall-Olkin-G (MO-G) by Marshall and Olkin 

(1997), the beta-G (B-G) by Eugene et al. (2002), the transmuted-G (T-G) by Shaw and 

Buckley (2007), the Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011), the 

McDonald-G (Mc-G) by Alexander et al. (2012), the gamma-G by Zografos and 

Balakrishanan (2009), the Kumaraswamy odd log-logistic-G (KwOLL-G) by Alizadeh  

et al. (2015), the beta odd log-logistic generalized by Cordeiro et al. (2015), the 

generalized transmuted-G (GT-G) by Nofal et al. (2015), the transmuted exponentiated 

mailto:munirahmaddr@yahoo.co.uk
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generalized-G (TExG-G) by Yousof et al. (2015) and the Kumaraswamy transmuted-G 

family (Kw-TG) by Afify et al. (2016). 
 

 Let  p t  be the probability density function (pdf) of a random variable         for 

         and let         be a function of the cumulative distribution function 

(cdf) of a random variable   such that         satisfies the following conditions:  
 

  

     

   

     

i , ,

ii  is differentiable and monotonically nondecreasing,and

iii          and          .

W G x a b

W G x

W G x a as x W G x b as x

  
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          

    (1) 

 

 Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by  
 

   
 

 ‍‍ ‍ ,

W G x

a

F x p t dt

  

                   (2) 

 

where         satisfies conditions (1). The pdf corresponding to (2) is given by  
 

              .
d

f x W G x p W G x
dx

 
        

 
            (3) 

 

 The objective of this study is to define a new family of distributions called the 

transmuted geometric-G (TG-G for short) family of distributions and study its 

mathematical properties.  
 

 Based on the T-X family, we construct a new generator by taking 

 
 

   1 1

G x
W G x

G x


     

 and   1 2     ,   0 1p t t t     . Then, the CDF of the 

TG-G family is given by  
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G x
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F x t dt
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 

       
      

       
   

                        (4) 
 

where        is the baseline CDF and     and       are two additional shape 

parameters. The TG-G is a wider class of continuous distributions. It includes the 

transmuted-G family of distributions and geometric-G family. 
 

 The rest of the paper is organized as follows. In Section 2, we define the TG-G 

family. A useful mixture representation for the pdf of the new family is derived in 

Section 3. In Section 4, we present two special models and plots of their pdf's and hrf's. 

In Section 5, we derive some of its general mathematical properties including quantile 

function, ordinary and incomplete moments, mean deviations, moment generating 

function (mgf), Rényi, Shannon and q-entropies. Order statistics and their moments are 

investigated in Section 6. In Section 7, we obtain the probability weighted moments 
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(PWMs) of the proposed family. Maximum likelihood estimation (MLE) of the model 

parameters is addressed in Section 8. In Section 9, we provide two applications to real 

data to illustrate the importance and flexibility of the new family. Finally, some 

concluding remarks are presented in Section 10. 

 

2. THE TG-G FAMILY 
 

 The pdf corresponding of (4) is given by  
 

   
 

   

 

   2
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1 .
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       (5) 

 

 For   =   we obtain geometric-G (GG) family. We denote by   TG-G        a 

random variable having density function (5). The reliability function (    ) and hrf 

(      of   are, respectively, given by 
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 Below is a simple motivation for the development of TG-G family of distributions. 

Suppose   and    be two random variables from      ; 1 1 ; .G x G x        Define 
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1
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1
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2
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Z
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



  

 

where                  and                  Then the cdf of   is given by (4). 
 

 The TG-G family of distribution appears to be more felxible and could be used for 

modeling various types of data. For illustration propose we provide pdf and hrf of some 

special models of this family in figures 1 and 2. It can be seen that the hazard rate can 

take constant, increasing, decreasing, upside down and bathtub shaped. Therefore, this 

family of distribution could be used to model diverse nature of data sets.  
 

 Henceforth, we will omit the dependence on the model parameters and write simply 

            and            . 
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3. MIXTURE REPRESENTATION 
 

 In this section, we provide a very useful representation for the TG-G density which 

can be used to study its mathematical characteristics. The pdf (5) can be rewritten as  
 

   
   

   

   
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          (6) 

 

 Then, the pdf (6) can be rewritten as  
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 The pdf (7) can be expressed as a mixture of exp-G densities  
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But  
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where 
( 1)( ) ( ) ( )x g x G x

    is the exp-G pdf with power parameter    ,  
 

  
   21  (1 )       and         1  (1 ) .k k

k ka b k          
 

 Thus, several mathematical properties of the TG-G family can be obtained simply 

from those properties of the exp-G family. Equation (8) is the main result of this section. 
 

 The cdf of the TG-G family can also be expressed as a mixture of exp-G densities.  

By integrating (8), we obtain the same mixture representation  
 

  
     1 2

0
‍‍ ‍Π    Π ,k k k k

k
F x a x b x



 

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where       is the cdf of the exp-G family with power parameter  . 

 

4. SPECIAL MODELS 
 

 In this section, we provide two special models of the TG-G family correspond to  

the baseline Weibull and Burr X distributions. These special models generalize some 

well-known distributions in the literature. 
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4.1 The TG-Weibull (TGW) Distribution 

 The Weibull distribution with positive parameters   and   has cdf and pdf (for  

   ) given by 
 ( )( ) 1 xG x e


    and  
 1 ( ) ,xg x x e


      respectively. Then, the 

pdf of the TGW model is given by  
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where  ,   and   are positive parameters and         
 

 The TGW distribution includes the transmuted Weibull (TW) distribution introduced 

by Aryal and Tsokos (2011) when    . The plots of the pdf and hrf of the TGW 

distribution are displayed in Figure 1 for selected parameter values. 
 

  
Figure 1: (a) pdf of TGW Distribution (b) hrf of TGW Distribution 

 

4.2 The TG-Burr X (TGBrX) Distribution 

 The Burr X (also known as the generalized Raleigh) model with positive parameters 

  and   has cdf and pdf (for    ) given by 
2( )( ) [1 ]xG x e     and

 
2 2   2 ( ) ( ) 12  [1 ]x xg x xe e        respectively. Then, the TGBrX density reduces to 
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where  ,   and   are positive parameters and         
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 Some plots of the pdf and hrf of the TGBrX distribution are given in Figure 2 for 

selected parameter values. 

 

5. MATHEMATICAL PROPERTIES 
 

 In this section, we provide some mathematical properties of the TG-G family 

including quantile function (qf), moments, generating function, incomplete moments, 

residual and reversed residual lifes and entropies. 

 

  
Figure 2: (a) pdf of TGBrX Distribution (b) hrf of TGBrX Distribution  

 

5.1 Quantile Function 

 The quantile function (qf ) of    where   TG-G         is obtained by inverting (4). 

The qf,       of   is given by 
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for    . For     , we have  
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u
Q u G

u


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 Simulating the TG-G random variable is straightforward. If   is a uniform variate on 

the unit interval       then the random variable        follows the TG-G distribution. 

 

5.2 Moments 

 Henceforth,    denotes the exp-G distribution with power parameter  . The  th 

moment of  , say   
 , follows from (9) as  
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 The  th central moment of  , say   , is given by  
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 The cumulants (  ) of   follow recursively from  
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where      
 ,      

    
        

     
   

    
  , etc. The skewness and kurtosis 

measures can be calculated from the ordinary moments using well-known relationships. 

 

5.3 Generating Function 

 Here, we provide two formulae for the mgf               of  . Clearly, the first 

one can be derived from equation (8) as  
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where       is the mgf of   . Hence,       can be determined from the exp-G 

generating function. 
 

 A second formula for       follows from (8) as  
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where        ∫  
 

 
                  and       is the qf corresponding to     ,  

i.e.,             . 

 

5.4 Incomplete Moments 

 The  th incomplete moment, say      , of   can be expressed from (8) as  
 

  ( 1) ( 2)
0

( ) ( ) [ ( ) ( ) ].
t

s s s
s k k

k

t
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t
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 The mean deviations about the mean            
     and about the median 

                  of   are given by        
       

          
   and  

     
        , respectively, where   

      ,                    is the 

median,     
   is easily calculated from (4) and       is the first incomplete moment 

given by (9) with    . 
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 Now, we provide two ways to determine    and   . First, a general equation for  

      can be derived from (9) as  
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where       ∫  
 

  
           is the first incomplete moment of the exp-G distribution. 

 

 A second general formula for       is given by  
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where            ∫  
    

 
           can be computed numerically. 

 

 These equations for       can be applied to construct Bonferroni and Lorenz curves 

defined for a given probability   by                
   and              

 , 

respectively, where   
       and        is the qf of   at  . 

 

5.5 Residual and Reversed Residual Life Functions 

 The  th moment of the residual life, say                    ,      ,..., is 

given by  
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 Therefore,  
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 Another interesting function is the mean residual life (MRL) function or the life 

expectation at age   defined by                   , which represents the 

expected additional life length for a unit which is alive at age  . The MRL of   can be 

obtained by setting     in the last equation. 
 

 The  th moment of the reversed residual life, say                     for 

    and      ,..., is defined by  
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 Therefore, the  th moment of the reversed residual life of   becomes  
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 The mean inactivity time (MIT) is defined by                   , and it 

represents the waiting time elapsed since the failure of an item on condition that this 
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failure had occurred in      . The MIT of   can be obtained easily by setting     in 

the above equation. 

 

5.6 Entropies 

 The Rényi entropy is defined by  
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 Using the pdf (6), we can write 
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 The Taylor series z is defined as  
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where   is a positive integer and                       is the descending 

factorial. 
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 Applying the last power series to the quantity  , we obtain 
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 Then we can write 
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where   
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 Then, the Rényi entropy of the TG-G family is given by  
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 The  -entropy, say      , can be obtained (for    ,    ) as  
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which follows from the last equation. 
 

 The Shannon entropy of a random variable  , say   , is a special case of the Rényi 

entropy when     and it is defined by  
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which follows by taking the limit of       as   tends to 1. 

 

6. ORDER STATISTICS 
 

 Order statistics make their appearance in many areas of statistical theory and practice. 

Let         be a random sample from the TG-G family of distributions. The pdf of  th 

order statistic, say     , can be written as  
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 Using Equations (5) and (11) we get 
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 Then 
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 Substituting Equation (12) in Equation (10), the pdf of      can be expressed as  
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and       is the exp-G density with power parameter  .  
 

 Then, the density function of the TG-G order statistics is a mixture of exp-G densities. 

Based on the last equation, we note that the properties of      follow from those of     . 

For example, the moments of      can be expressed as 
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 Based upon the moments in Equation (13), we can derive explicit expressions for the 

L-moments of   as infinite weighted linear combinations of the means of suitable TG-G 

order statistics. They are linear functions of expected order statistics defined by  
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7. PROBABILITY WEIGHTED MOMENTS 
 

 The PWMs are expectations of certain functions of a random variable and they can be 

defined for any random variable whose ordinary moments exist.  
 

 The      th PWM of   following the TG-G distribution, say     , is formally  

defined by  
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 From Equation (5) and the last equation , we can write 
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 Finally, the      th PWM of   can be obtained from an infinite linear combination of 

exp-G moments given by  
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8. MAXIMUM LIKELIHOOD ESTIMATION 
 

 Here, we determine the maximum likelihood estimators (MLEs) of the parameters of 

the TG-G family of distributions from complete samples only. Let         be a random 

sample from this family with parameter vector  , where   (      )  .  
 

 Then, the log-likelihood function for  , say         is given by  
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 The score vector components, say      
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where    ; ; /i i kg x g x       and     .; ; /i i kG x G x        
 

 Setting the nonlinear system of equations          
   and solving them 

simultaneously yields the MLE  ̂    ̂  ̂  ̂    of            . These equations 

cannot be solved analytically and statistical software can be used to solve them 

numerically using iterative methods such as the Newton-Raphson type algorithms. For 

interval estimation of the model parameters, we require the observed information matrix 

whose elements are given in the Appendix. 

 

9. APPLICATIONS 
 

 In this section, we provide two applications to real data to illustrate the flexibility of 

the TGW and TGBrX models presented in Section 4. The goodness-of-fit statistics for 

these models are compared with other competitive models and the MLEs of the model 

parameters are determined. 

 

Data Set I: The Nicotine Data 

 The first data set refers to nicotine measurements, made from several brands of 

cigarettes in 1998, collected by the Federal Trade Commission. The report entitled tar, 

nicotine, and carbon monoxide of the smoke of 1206 varieties of domestic cigarettes for 

the year of 1998 consists of the data sets and some information about the source of the 

data, smokers behavior and beliefs about nicotine, tar and carbon monoxide contents in 

cigarettes. This data set consists of n = 346 observations. These data have been used by 

Afify et al. (2016) to fit the Marshall-Olkin additive Weibull distribution 
 

 We shall compare the fits of the TGW distribution with those of other competitive 

models, namely: the Kumaraswamy-transmuted exponentiated modified Weibull 

distribution (Kw-TEMW) (Al-Babtain et al., 2015), transmuted exponentiated modified 

Weibull (TEMW) (Eltehiwy and Ashour, 2013), transmuted additive Weibull (TAW) 

(Elbatal and Aryal, 2013), Kumaraswamy modified Weibull (Kw-MW) (Cordeiro et al., 

2014), beta Weibull (BW) (Lee et al., 2007), Kumaraswamy Weibull (Kw-W) (Cordeiro 

et al., 2010), and additive Weibull (AW) (Xie and Lai, 1995) distributions with 

corresponding densities (for    ): 
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 AW:      1 1 .
x x

f x x x e
          

 

 The parameters of the above densities are all positive real numbers except the 

parameter   where      . 

 

Data Set II: The Gauge Lengths Data 

 The second data set (gauge lengths of 20 mm) (Kundu and Raqab, 2009) consists of 

74 observations. This data set is previously studied by Afify et al. (2016) to fit the 

Kumaraswamy complementary Weibull geometric distribution. For this data set, we shall 

compare the fits of the TGBrX distribution with those of other competitive models, 

namely: the generalized transmuted Burr X (GT-BrX) (Nofal et al., 2015), McDonald 

Weibull (Mc-W) (Cordeiro et al., 2014), modified beta Weibull (MBW) (Khan, 2015), 

exponentiated transmuted generalized Rayleigh (ETGR) (Afify et al., 2015), T-BrX and 

BrX models with corresponding densities (for    ): 
 

 GT-BrX:      
2 2 2     

1
2 ( ) ( ) ( )2 1 1 1 ;

a b
x x xf x xe e a a b e
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     

  

 

 Mc-W:  
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 MBW:  
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    
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        
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 ETGR:        
2 2 21
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 The parameters of the above densities are all positive real numbers except the 

parameter   where      . 
 

 In order to compare the fitted models, we consider some goodness-of-fit criteria like 

the Akaike information criterion (   ), Bayesian information criterion (   ), Hannan-

Quinn information criterion (    ), consistent Akaike information criterion (    ), 

    ̂ where  ̂ is the maximized log-likelihood, Anderson-Darling      and the Cramér-

von Mises (  ) statistics. The better distribution corresponds to smaller    ,    , 

    ,     ,    and    values.  

 

Table 1 

Goodness-of-Fit Statistics for Data Set I 

Model    ̂                         

TGW                                                         

Kw-TEMW                                                         

TEMW                                                         

TAW                                                         

Kw-MW                                                        

BW                                                      

Kw-W                                                       

AW                                                         

 

Table 2 

Goodness-of-Fit Statistics for Data Set II 

Model    ̂                         

TGBrX                                                         

GT-BrX                                                        

Mc-W                                                       

MBW                                                         

ETGR                                                  

T-BrX                                                    

BrX                                                         
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Table 3 

MLEs and their Standard Errors for Data Set I  

 
Table 4 

MLEs and their Standard Errors for Data Set II 

 

Model Estimates (Standard Errors) 

TGW                                                                 

BW                                                                  

Kw-W                                                                  

AW                                                                  

TEMW                                                                                  

TAW                                                                                 

Kw-MW                                                                                

Kw-TEMW 
       (    ) 
      (     ) 

       (    ) 
       (     ) 

              
 

                       (     ) 

Model Estimates (Standard Errors) 

GTBrX                                                                                 

Mc-W                                                                           (     ) 

MBW                                                          (     )                 

TG-BrX                                                                   

ETGR                                                                 

T-BrX                                                   

BrX                                   
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Figure 3: Fitted pdf of TGW Model and other Distributions for Data Set I 

 

 

 
Figure 4: Fitted pdf of TGBrX Model and other Distributions for Data Set II 
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 Tables 1 and 2 list the values of goodness-of-fit statistics whereas the MLEs of the 

model parameters and their standard errors are given in Tables 3 and 4. The histogram of 

the nicotine data and the estimated densities are displayed in Figure 3. Figure 4, displays 

the histogram of the gauge lengths data and the estimated densitie. 
 

 In Table 1, we compare the fits of the TGW model with the Kw-TEMW, TEMW, 

TAW, Kw-MW, BW, Kw-W and AW distributions. The values in these tables indicate 

that the TGW model has the lowest goodness-of-fit statistics (for data set I) among the 

fitted models. So, the TGW model could be chosen as the best model for the subject data. 
 

 Similarly, in Table 2, we compare the fits of the TGBrX model with the GT-BrX, Mc-

W, MBW, ETGR, T-BrX and BrX distributions. It is shown that the TGBrX model has 

the lowest goodness-of-fit statistics values (for data set II) among all fitted models. So, 

the TGBrX model can be chosen as the best model for the subject data. It is clear from 

Tables 1 and 2 and Figures 3 and 4 that these special case of TG-G family provide the 

best fit to both data sets. 
 

10. CONCLUSIONS 
 

 There is a great interest among statisticians and practitioners in the past decade to 

generate new extended families from classic ones. We present a new transmuted 

geometric-G (TG-G) family of distributions, which extends the transmuted family by 

adding one extra shape parameter. The mathematical properties of the new family 

including explicit expansions for the ordinary and incomplete moments, generating 

function, mean deviations, entropies, order statistics and probability weighted moments 

are provided. The model parameters are estimated by the maximum likelihood estimation 

method and the observed information matrix is determined. It is shown, by means of two 

real data sets, that special cases of the TG-G class can give a better fit than other models 

generated by well-known families. 
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APPENDIX 

 

The elements of the observed information matrix are:  
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and 
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where    2 2; ; /i i kg x g x      and    2 2; ; ./i i kG x G x       

 


